
RÉSUMÉ. Dans ce travail nous étudions la notion de suite
exacte dans la sesqui-catégorie des n-groupöıdes. En utilisant
les produits fibrés homotopiques, à partir d’un n-foncteur en-
tre n-groupöıdes pointés nous construisons une suite de six (n-
1)-groupöıdes. Nous montrons que cette suite est exacte dans
un sens qui généralise les notions usuelles d’exactitude pour les
groupes et les gr-catégories. En réitérant le processus, nous
obtenons une ziggourat1 de suites exactes de longueur crois-
sante et dimension décroissante. Pour n = 1, nous retrouvons
un résultat classic du à R. Brown et, pour n = 2, nous retrou-
vons ses généralisations dues à Hardie, Kamps et Kieboom et à
Duskin, Kieboom et Vitale.

RÉSUMÉ. In this work we study exactness in the sesqui-
category of n-groupoids. Using homotopy pullbacks, we con-
struct a six term sequence of (n-1)-groupoids from an n-functor
between pointed n-groupoids. We show that the sequence is ex-
act in a suitable sense, which generalizes the usual notions of
exactness for groups and categorical groups. Moreover, iterating
the process, we get a ziqqurath2 of exact sequences of increasing
length and decreasing dimension. For n = 1, we recover a clas-
sical result due to R. Brown and, for n = 2, its generalizations
due to Hardie, Kamps and Kieboom and to Duskin, Kieboom
and Vitale.

1. Introduction

This work is a contribution to the general theory of higher dimensional
categorical structures, like n-categories and n-groupoids. Examples
and applications of higher dimensional categorical structures abound
in mathematics and mathematical physics; the reader in search of good
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1Les Ziggourats (ou Ziggurats) étaient des temples en forme de pyramide à gradins
répandus auprès des habitants de l’ancienne Mésopotamie [14].

2Ziqquraths (or Ziggurats) were a type of step pyramid temples common to the
inhabitants of ancient Mesopotamia [14].
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motivations can consult the books [5, 10, 11]. We focalize our atten-
tion on the study of homotopy pullbacks in the sesqui-category of n-
groupoids and, more precisely, on the notion of exact sequence that can
be expressed using homotopy pullbacks.
The problem we take as our guide-line is to generalize to n-groupoids
a result established by R. Brown in the context of groupoids. Let us
recall Brown’s result from [1]: consider a fibration of groupoids

F : A→ B

and, for a0 a fixed object of A, consider the fibre Fa0 of F over a0. There
is an exact sequence

Π1(Fa0)→ Π1(A)→ Π1(B)→ Π0(Fa0)→ Π0(A)→ Π0(B)

where Π1(−) is the group of automorphisms of the base point and Π0(−)
is the pointed set of isomorphism classes of objects.
The interest of Brown’s result is that, despite its simplicity, it covers
several quite different particular cases. We quote some of them:

1. A fibration f : X → Y of pointed topological spaces induces a
fibration

F = Π1(f) : Π1(X)→ Π1(Y )

on the homotopy groupoids; the sequence given by F is the first
part of the homotopy sequence of f.

2. For G a fixed group, any extension A → B → C of G-groups
induces a fibration

F : Z1(G,B)→ Z1(G,C)

on the groupoids of derivations; the sequence given by F is the
fundamental exact sequence in non-abelian cohomology of groups.

3. Let R be a commutative ring with unit, and consider

A = the groupoid of Azumaya R-algebras and isomorpshisms
of R-algebras.
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B = the groupoid of Azumaya R-algebras and isomorphism
classes of invertible bimodules.

As fibration F we can consider the functor F : A → B which
sends an isomorphism f : A → B to the invertible A-B-bimodule

fB, where the action of A on fB is given by

A⊗R B
f⊗1 // B ⊗R B // B

For X a fixed Azumaya R-algebra, the sequence given by F has
the form

InnX → AutX → PicX ' PicR→ π0(FX)→ π0(A)→ BrR

(Pic and Br stay for Picard and Brauer, Aut and Inn are au-
tomorphisms and inner automorphisms of R-algebras). Such a
sequence is an extension of the classical Rosenberg-Zelinsky exact
sequence.

These examples suggest to look for an higher dimensional version of
Brown’s result. Indeed:

1. A fibration of pointed topological spaces also induces a morphism
between the homotopy bigroupoids; a convenient generalization
of Brown’s result gives then the first 9 terms of the homotopy
sequence (see [7] for more details).

2. Instead of an extension of G-groups, one can consider an extension
of G-crossed modules for G a fixed crossed module, or an extension
of G-categorical groups for G a fixed categorical group, and con-
struct a morphism between the 2-groupoids of derivations; from
such a morphism one can then obtain an exact sequence in non-
symmetric cohomology of crossed modules or categorical groups
(see [4] for more details).

3. The functor F : A→ B of Example 3 can be easily modified so to
have a morphism of bigroupoids:

B = the bigroupoid of Azumaya R-algebras, invertible bi-
modules, and isomorphisms of bimodules.
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A = the bigroupoid of Azumaya R-algebras, isomorphisms
of R-algebras, and natural isomorphisms. A natural isomor-
phism

A

f

&&

g

88⇓β B

is an element β of B invertible with respect to the product
and such that β · f(a) = g(a) · β for all a ∈ A.

The morphism F : A → B is defined on a natural isomorphism β
by

F (β) : fB → gB F (β)(x) = β · x.

(More in general, one can consider as F the inclusion of enriched
categories, equivalences and natural isomorphisms into enriched
categories, invertible distributors and natural isomorphisms.)

With these examples in mind, we have developed the theory needed
to state and prove our generalization of Brown’s result: consider an
n-functor F : A → B between pointed n-groupoids and its homotopy
kernel K : K→ A

i- there is an exact sequence of (n-1)-pointed groupoids

Π1(K)→ Π1(A)→ Π1(B)→ Π0(K)→ Π0(A)→ Π0(B)

ii- since Π0 and Π1 preserve exact sequences and commute each other,
we can iterate the process and we get a ziqqurath of exact se-
quences

three pointed n-groupoids
six pointed (n-1)-groupoids

nine pointed (n-2)-groupoids
...

3 · n pointed groupoids
3 · (n+1) pointed sets
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In particular, for n = 1 we obtain the two-level ziqqurath of Brown and,
for n = 2, the three-level ziqqurath of [7] and [4].

The paper is organized as follows:

- In Section 2 we give the inductive (= enriched style) definition
of n-Cat. We recall the definition of homotopy pullback and we
prove that n-Cat is a sesqui-category with homotopy pullbacks.

- Section 3 is devoted to the definition of the sub-sesqui-category
n-Gpd of n-groupoids, which is closed in n-Cat under homotopy
pullbacks.

- In Section 4 we define exactness in the sesqui-category of pointed
n-groupoids.

- The sesqui-functor Π
(n)
0 : n-Gpd → (n-1)-Gpd is constructed in

Section 5, and it is proved that it preserves exact sequences.

- Lax n-modifications are introduced in Section 6. We prove that
homotopy pullbacks in n-Cat also satisfy a more sophisticated
universal property expressed using lax n-modifications. This new
universal property is needed in Sections 7, 8 and 9.

- In Section 7 we construct two sesqui-functors Π
(n)
1 : n-Gpd∗ →

(n-1)-Gpd∗ and Ω(n) : n-Gpd∗ → n-Gpd∗, and we prove that they
preserve exact sequences. (Proposition 7.3 is proved using a result
contained in the Appendix.)

- Finally, in Sections 8 and 9 we prove the main results: the fibration
sequence and the ziqqurath of exact sequences associated with an
n-functor between pointed n-groupoids.

Sections 2 and 6 are a survey of results from [13], they are inserted
here for the reader’s convenience. All along the paper, several proofs
are omitted. Some of them are something more than a strightforward
exercise. The interested reader can find all the details in [12].
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2. The sesqui-category n-Cat

In this section we describe the sesqui-category n-Cat of strict n-categories,
strict n-functors and lax n-transformations. We also describe homotopy
pullbacks (h-pullbacks for short) in n-Cat. The definition of sesqui-
category can be found in [15], for h-pullbacks see also [6].

2.1. Definition.

1. 0-Cat is the category of small sets and maps.

2. 1-Cat is the category of small categories and functors.

3. For n > 1, n-Cat has (strict) n-categories as objects and (strict)
n-functors as morphisms.
An n-category C consists of a set of objects C0, and for every pair
c0, c

′
0 ∈ C0, a (n-1)-category C1(c0, c

′
0). The structure is given by

morphisms of (n-1)-categories:

I
u0(c0) // C1(c0, c0) C1(c0, c

′
0)× C1(c′0, c

′′
0)
◦0
c0,c
′
0,c
′′
0 // C1(c0, c

′′
0)

called respectively 0-units and 0-compositions, with c0, c
′
0, c
′′
0 any

triple of objects of C. Axioms are the usual ones for strict unit
and strict associativity.
An n-functor F : C → D consists of a map F0 : C0 → D0 together
with morphisms of (n-1)-categories

F
c0,c′0
1 : C1(c0, c

′
0)→ D1(F0c0, F0c

′
0)

with c0, c
′
0 any pair of objects of C, such that usual strict functo-

riality axioms are satisfied.

2.2. Remark. The previous definition makes sense because one can
prove by induction that n-Cat is a category with binary products and
a terminal object I.
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2.3. Notation. Cell dimension will be often recalled as subscript: ck
is a k-cell in the n-category C. Moreover, if

ck : ck−1 → c′k−1 : ck−2 → c′k−2 : · · · → · · · : c1 → c′1 : c0 → c′0,

ck can be considered as an object of the (n-k)-category[
· · ·
[
[C1(c0, c

′
0)]1(c1, c

′
1)
]

1
· · ·
]

1
(ck−1, c

′
k−1).

In order to avoid this quite uncomfortable notation, the latter will be
renamed more simply Ck(ck−1, c

′
k−1), while Ck denotes the set of all k-

cells in C. Finally, 0-subscript of the underlying set of an n-category
and 0-superscript of unit u and composition ◦ will be often omitted.

2.4. Definition. Let F,G : C→ D be morphisms of n-categories. By
a 2-morphism α : F ⇒ G is meant:

1. The equality F = G if n = 0.

2. A natural transformation α : F ⇒ G if n = 1.

3. A lax n-transformation α : F ⇒ G if n > 1, that is, a pair (α0, α1)
where α0 : C0 → D1 is a map such that α0(c0) = αc0 : Fc0 → Gc0,

and α1 = {αc0,c
′
0

1 }c0,c′0∈C0
is a collection of 2-morphisms of (n-1)-

categories

C1(c0, c
′
0)

F
c0,c
′
0

1

yyssssssssss G
c0,c
′
0

1

%%LLLLLLLLLL

D1(F0c0, F0c
′
0)

−◦α0c′0 %%KKKKKKKKKK
D1(G0c0, G0c

′
0)

α0c0◦−yyrrrrrrrrrr

D1(F0c0, G0c
′
0)

α
c0,c
′
0

1ks

(1)

satisfying the following axioms:

− (functoriality w.r.t. composition) for every triple of objects
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c0, c
′
0, c
′′
0 of C0,

C1(c0, c
′
0)×C1(c′0, c

′′
0)

id×F c
′
0,c
′′
0

1

uukkkkkkkkkkkkkk

id×Gc
′
0,c
′′
0

1

������

��������

F
c0,c
′
0

1 ×id

**********

��*
*********

G
c0,c
′
0

1 ×id

))SSSSSSSSSSSSSS

≡

C1(c0, c
′
0)×D1(F0c

′
0, F0c

′′
0)

id×(−◦α0c′′0 )

��

D1(G0c0, G0c
′
0)×C1(c′0, c

′′
0)

(α0c0◦−)×id

��

C1(c0, c
′
0)×D1(G0c

′
0, G0c

′′
0)

id×(α0c′0◦−)

�������������������

D1(F0c0, F0c
′
0)×C1(c′0, c

′′
0)

(−◦α0c′0)×id %%LLLLLLLLLL

C1(c0, c
′
0)×D1(F0c

′
0, G0c

′′
0)

F
c0,c
′
0

1 ×id
��

D1(F0c0, G0c
′
0)×C1(c′0, c

′′
0)

id×Gc
′
0,c
′′
0

1��
D1(F0c0, F0c

′
0)×D1(F0c

′
0, G0c

′′
0)

◦0 ))SSSSSSSSSSSSSS
D1(F0c0, G0c

′
0)×D1(G0c

′
0, G0c

′′
0)

◦0uukkkkkkkkkkkkkk

D1(F0c0, G0c
′′
0)

id×αc
′
0,c
′′
0

1

ai LLLLL
LLLLL

α
c0,c
′
0

1 ×id
u} rrrrr

rrrrr

(2)

=

C1(c0, c
′
0)× C1(c′0, c

′′
0)

◦0
��

C1(c0, c
′′
0)

F
c0,c
′′
0

1

wwooooooooooo
G
c0,c
′′
0

1

''OOOOOOOOOOO

D1(F0c0, F0c
′′
0)

−◦α0c′′0 ''OOOOOOOOOOO
D1(G0c0, G0c

′′
0)

α0c0◦−wwooooooooooo

D1(F0c0, G0c
′′
0)

α
c0,c
′′
0

1ks
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− (functoriality w.r.t. units) for every object c0 of C0,

I
u0(c0)
��

C1(c0, c0)
F
c0,c0
1

yyssssssssss G
c0,c0
1

%%LLLLLLLLLL

D1(F0c0, F0c0)

−◦α0c0 %%KKKKKKKKKK
D1(G0c0, G0c0)

α0c0◦−yyrrrrrrrrrr

D1(F0c0, G0c0)

α
c0,c0
1ks

=

I

[α0c0]

		

[α0c0]

��
D1(F0c0, G0c0)

idks
(3)

2.5. Proposition. The category n-Cat equipped with lax n-transfor-
mations is a sesqui-category with h-pullbacks.

Before proving the above proposition, let us recall the universal property
of the h-pullback: consider two n-functors F : A → B and G : C → B.
An h-pullback of F and G is a four-tuple (P, P,Q, ε)

P
Q //

P
��

C
G
��

A
F
// B

ε
;C����

����

such that for any other four-tuple (X,M,N, λ : M · F ⇒ N · G) there
exists a unique L : X → P satisfying L · P = M , L · Q = N , L · ε = λ.
This universal property defines h-pullbacks up to isomorphism.

Proof. We need vertical composition of lax n-transformations and re-
duced horizontal composition (whiskering). In fact, according to the
following reference diagram

B N // C

G

??F //

E

��
D L // E

α��

ω��
,
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we let:
[ω · α]0(c0) = ω0c0 ◦ α0c0,

[ω · α]
c0,c′0
1 =

(
α
c0,c′0
1 · (ω0c0 ◦ −)

)
·
(
ω
c0,c′0
1 · (− ◦ α0c

′
0)
)

;

[N · α]0 = α0(N(b0)), [N · α]
b0,b′0
1 = N

b0,b′0
1 · αNb0,Nb

′
0

1 ;

[α · L]0 = L(α0(c0)), [α · L]
c0,c′0
1 = α

c0,c′0
1 · LFc0,Gc

′
0

1 .

These constructions make n-Cat a sesqui-category.
An h-pullback in n-Cat can be described as follows.
For n=0, the usual pullback in Set is an instance of h-pullback, with
the 2-morphism ε being an identity.
For n > 0, we give an inductive construction of the standard h-pullback
satisfying the universal property recalled above. The set P0 is the fol-
lowing limit in Set

P0
P0

uu
ε0
��

Q0

))A0

F0 ##HHHHHH B1

s{{wwwwww

t ##GGGGGG C0

G0{{vvvvvv

B0 B0

where s, t are source and target maps of 1-cells. More explicitly,

P0 = {(a0, b1, c0) s.t. a0 ∈ A0, c0 ∈ C0, b1 : Fa0 → Gc0 ∈ B1}

P0((a0, b1, c0)) = a0, Q0((a0, b1, c0)) = c0, ε0((a0, b1, c0)) = b1

Let us fix two elements p0 = (a0, b1, c0) and p′0 = (a′0, b
′
1, c
′
0) of P0. The

(n-1)-category P1(p0, p
′
0) is described by the following h-pullback in (n-

1)-Cat:

P1(p0, p
′
0)

Q
p0,p
′
0

1 //

P
p0,p
′
0

1

��

C1(c0, c
′
0)

G
c0,c
′
0

1��
B1(Gc0, Gc

′
0)

b1◦−
��

A1(a0, a
′
0)

F
a0,a
′
0

1

// B1(Fa0, Fa
′
0)

−◦b′1
// B1(Fa0, Gc

′
0)

ε
p0,p
′
0

1

px
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The units and the compositions in P are determined by the universal
property of the h-pullbacks P1(p0, p

′
0).

3. The sesqui-category n-Gpd

We first define equivalences of n-categories, and we use them to define
n-groupoids.

3.1. Definition. An n-functor F : C→ D is an equivalence if

(a) F is essentially surjective on objects: for each object d0 ∈ D0,
there exist c0 ∈ C0 and d1 : Fc0 → d0 such that, for each d′0 ∈ D0,
the (n-1)-functors

d1 ◦ − : D1(d0, d
′
0)→ D1(Fc0, d

′
0)

− ◦ d1 : D1(d′0, F c0)→ D1(d′0, d0)

are equivalences of (n-1)-categories, and

(b) for each c0, c
′
0 ∈ C0, the (n-1)-functor

F
c0,c′0
1 : C1(c0, c

′
0)→ D1(Fc0, F c

′
0)

is an equivalence of (n-1)-categories.

Essentially surjective n-functors and equivalences are closed under com-
position and stable under h-pullback.

3.2. Definition. A 1-cell c1 : c0 → c′0 of an n-category C is an equiv-
alence if, for each c′′0 ∈ C0, the (n-1)-functors

c1 ◦ − : C1(c′0, c
′′
0)→ C1(c0, c

′′
0) − ◦c1 : C1(c′′0, c0)→ C1(c′′0, c

′
0)

are equivalences of (n-1)-categories.

3.3. Definition. An n-category C is an n-groupoid if

(a) every 1-cell of C is an equivalence, and

(b) for each c0, c
′
0 ∈ C0, the (n-1)-category C1(c0, c

′
0) is an (n-1)-

groupoid.
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3.4. Remark. In the context of strict n-categories, the previous def-
inition of n-groupoid is equivalent to those given by Street [15] and
Kapranov and Voevodsky [9]. This fact is not easy to prove and a de-
tailed proof can be found in [8]. In the same paper we also show that
Definition 3.1 and Definition 3.2 are indeed redundant. In fact

• in Definition 3.1, d1 ◦− is an equivalence if, and only if, −◦ d1 is;

• in Definition 3.2, c1 ◦ − is an equivalence if, and only if, − ◦ c1 is.

We denote by n-Gpd the full sub-sesqui-category of n-Cat having as
objects n-groupoids. The following result is straightforward.

3.5. Proposition. The sesqui-category n-Gpd is closed in n-Cat un-
der h-pullbacks.

We denote by n-Gpd? the sequi-category of pointed n-groupoids: a
pointed n-groupoid is an n-groupoid C together with a fixed object
? ∈ C0, an n-functor F : C → D is pointed if F (?C) = ?D, a lax n-
transformation α : F ⇒ G is pointed if α(?C) = u0

?D
. Once again, h-

pullbacks in n-Gpd? are constructed as in n-Cat.

4. Exact sequences

To define exactness, we need a notion of surjectivity suitable for n-
categories.

4.1. Definition. An n-functor F : C→ D is h-surjective if

(a) it is essentially surjective on objects (see Definition 3.1), and

(b) for each c0, c
′
0 ∈ C0, the (n-1)-functor F

c0,c′0
1 is h-surjective.

Once again, h-surjective functors are closed under composition and sta-
ble under h-pullbacks. Moreover, an n-functor is an equivalence iff it is
h-surjective and faithful (i.e., injective on n-cells).
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If F : C→ D is an n-functor in n-Gpd?, we denote by

K∗(F )
K∗(F )

//

0

��
C

F
// D

κ∗(F )

��

its h-kernel, that is the h-pullback

K∗(F )
K∗(F ) //

!

��

C
F

��
I ?

//

κ∗(F )
8@xxxxxxxxxx

xxxxxxxxxx D

4.2. Definition. Let the following diagram in n-Gpd? be given:

A
F
//

0

��
B

G
// C

ε
��

We call the triple (F, ε,G) exact in B if the comparison n-functor

L : A→ K∗(G)

given by the universal property of the h-kernel (K∗(G), K∗(G), κ∗(G)),
is h-surjective.

A

L

��

F

##GGGGGGGGG
0

��
B G // C

K∗(G)
K∗(G)

<<yyyyyyyyy

0

FF

ε

� �

�����

������

κ∗(G)

LT!!!!!!

!!!!!!

≡

Observe that for n = 0 this is the usual definition of exact sequence of
pointed sets, and for n = 1 this is the notion of 2-exactness introduced
in [17] for categorical groups. In fact, for n = 1 h-surjective precisely
means full and essentially surjective.
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4.3. Remark. Analogously, we say that the triple (F, ε,G)

A
F
//

0

��
B

G
// C

ε

KS

is exact in B if the comparison n-functor L : A→ K∗(G) is h-surjective,
where

K∗(G)
K∗(G)

//

0

��
B

G
// C

κ∗(G)

KS

is the h-pullback

K∗(G) ! //

K∗(G)

��

I
?

��
B

G
//

κ∗(G)

8@xxxxxxxxxx

xxxxxxxxxx
C

5. The sesqui-functors Π
(n)
0 and D(n)

In this section we define two sesqui-functors

n-Gpd
Π

(n)
0 // (n-1)-Gpd

D(n)
oo

(see [16] for the definition of sesqui-functor).

5.1. Definition. (The functor Π
(n)
0 )

1. Π
(1)
0 is the functor Gpd → Set assigning to a groupoid C the set
|C| of isomorphism classes of objects of C.

2. For n > 1, let an n-groupoid C be given. Then

Π
(n)
0 C = ([Π

(n)
0 C]0, [Π

(n)
0 C]1(−,−))

where [Π
(n)
0 C]0 = C0 and [Π

(n)
0 C]1(c0, c

′
0) = Π

(n−1)
0 (C1(c0, c

′
0)).

Compositions and units are obtained inductively:
Π

(n)
0 C◦ = Π(n−1)(C◦),
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u(c0) = Π
(n−1)
0 (u(c0)).

Now let an n-functor F : C → D be given. Then [Π
(n)
0 F ]0 = F0

and [Π
(n)
0 F ]

c0,c′0
1 = Π

(n−1)
0 (F

c0,c′0
1 ) define Π

(n)
0 on morphisms.

Note that the previous definition makes sense because one can prove
inductively that Π

(n)
0 preserves binary products and the terminal object

I.
5.2. Definition. (The sesqui-functor Π

(n)
0 )

1. Since [Π
(2)
0 D]1 = D1/ ∼, the quotient of D1 under the equivalence

relation ∼ identifying 1-cells d1, d
′
1 : d0 → d′0 if there exists a 2-cell

d2 : d1 → d′1, we define [Π′′0α]0 = α0 · p, where p is the canonic
projection on the quotient.

2. For n > 2, let α : F ⇒ G : C → D be a 2-morphism. We define

Π
(n)
0 α by [Π

(n)
0 α]0 = α0 and [Π

(n)
0 α]

c0,c′0
1 = Π

(n−1)
0 (α

c0,c′0
1 ).

A careful use of induction shows that Π
(n)
0 is well-defined and is indeed

a sesqui-functor.

The definition of the sesqui-functor D(n) is easier. We make it explicit
only on objects.

5.3. Definition. (The sesqui-functor D(n))

1. D(1) is the functor (= trivial sesqui-functor) D(1) : Set → Gpd
assigning to a set C the discrete groupoid D(C) with objects the
elements of C and only identity arrows.

2. For n > 1, let an (n-1)-groupoid C be given. Then D(n) is given
by [D(n)C]0 = C0 and [D(n)C]1(c0, c

′
0) = D(n−1)(C1(c0, c

′
0)).

It is an exercise for the reader to prove the following fact which, in
particular, implies that D(n) preserves h-pullbacks.

5.4. Proposition. For all n > 1, there is an adjunction of sesqui-
functors

Π
(n)
0 a D(n) ,

and therefore an adjunction of the underlying functors.
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We are going to prove the main result of this section: the sesqui-functor
Π

(n)
0 preserves exact sequences. Two preliminary lemmas clarify the

relations between preservation of exactness and its main ingredients:
h-surjectivity and the notion of h-pullback.

5.5. Lemma. Let us consider the following h-pullback diagram:

P S //

R
��

Z
H
��

B

ε
;C����

����

G
// C

The comparison L : Π
(n)
0 P → Q with the h-pullback of Π

(n)
0 (G) and

Π
(n)
0 (H) is h-surjective.

Π
(n)
0 P

L

##FFFFFFFFFF
Π

(n)
0 S

��

Π
(n)
0 R

&&

Q Q //

P
��

Π
(n)
0 Z

Π
(n)
0 H
��

Π
(n)
0 B

γ
7?wwwwww

wwwwww

Π
(n)
0 G

// Π
(n)
0 C

Π
(n)
0 ε

;C

Proof. By induction on n.
1) For n = 1, the h-pullback P has objects and arrows

(b0, Gb0
c1 // Hz0 , z0), (b1,=, z1) : (b0, c1, z0)→ (b′0, c

′
1, z
′
0)

where the “=” stays for the commutative square c1 ◦ Hz1 = Gb1 ◦
c′1. Hence the set Π

(1)
0 (P) has elements the classes [b0, c1, z0]∼. On the

other side, the set Q is a usual pullback in Set. It has elements the
pairs ([b0]∼, [z0]∼) such that Π

(1)
0 G([b0]∼) = Π

(1)
0 H([z0]∼), i.e. [Gb0]∼ =

[Hz0]∼, i.e. such that there exists c1 : Gb0 → Hz0. Then the comparison
L = L0 : [b0, c1, z0]∼ 7→ ([b0]∼, [z0]∼) is clearly surjective.
2) For n = 2, the h-pullback P is a 2-groupoid with objects

(b0, Gb0
c1 // Hz0 , z0).
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Arrows and 2-cells are of the form

(b1, c2, z1) : (b0, c1, z0)→ (b′0, c
′
1, z
′
0), (b2,=, z2) : (b1, c2, z1)→ (b′1, c

′
2, z
′
1)

Therefore the groupoid Π
(2)
0 P has objects (b0, c1, z0) and arrows [b1, c2, z1]∼.

On the other side, the groupoid Q has objects and arrows

(b0, Gb0

[c1]∼ // Hz0 , z0), ([b1]∼,=, [z1]∼)

with [b1]∼ : b0 → b′0 in Π
(2)
0 B and [z1]∼ : z0 → z′0 in Π

(2)
0 Z such that the

diagram

Gb0

[c1]∼ //

[Gb1]∼
��

Hz0

[Hz1]∼
��

Gb′0 [c′1]∼
// Hz′0

(4)

commutes. Hence the comparison

L : (b0, c1, z0) 7→ (b0, c1, z0)

[b1, c2, z1]∼ 7→ ([b1]∼, [z1]∼)

is h-surjective. In fact it is an identity on objects, and full on homs. Let
us fix a pair of objects (b0, c1, z0) and (b′0, c

′
1, z
′
0) in the domain, and an

arrow ([b1]∼,=, [z1]∼) in Q, where the “=” express the commutativity
of the diagram (4) above. Then [c1 ◦Hz1]∼ = [Gb1 ◦ c′1]∼ if, and only if,
there exists

c2 : c1 ◦Hz1 → Gb1 ◦ c′1.

In other words we get an arrow [b1, c2, z1]∼ of Π
(2)
0 P sent by L to ([b1]∼,=

, [z1]∼), i.e. L is full.

3) Finally, let n > 2. On objects, L0 : [Π
(n)
0 P]0 → Q0 is the identity. In

fact, [Π
(n)
0 P]0 = P0, the set-theoretical limit over the diagram

B0

G0   AAAAAAAA C1

s
~~}}}}}}}}

t   AAAAAAAA Z0

H0~~}}}}}}}}

C0 C0
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and, for n > 2, this diagram coincides with the one defining Q0:

[Π
(n)
0 B]0

[Π
(n)
0 G]0 ""FFFFFFFF

[Π
(n)
0 C]1

s
||xxxxxxxx

t ""FFFFFFFF
[Π

(n)
0 Z]0

[Π
(n)
0 H]0||xxxxxxxx

[Π
(n)
0 C]0 [Π

(n)
0 C]0

On homs, let us fix two objects p1 = (b0, c1, z0) and p′1 = (b′0, c
′
1, z
′
0)

of [Π
(n)
0 P]0 = P0 and compute L

p1,p′1
1 by means of universal property of

h-pullbacks. The diagram

[Π
(n)
0 P]1(p0, p

′
0)

L
p0,p
′
0

1))SSSSSSS

[Π
(n)
0 S]1

**

[Π
(n)
0 R]1 **

Q1(p0, p
′
0)

Q1 //

P1

��

[Π
(n)
0 Z]1(z0, z

′
0)

[Π
(n)
0 H]1

��

[Π
(n)
0 B]1(b0, b

′
0)

[Π
(n)
0 G]1 ))TTTTTTT

[Π
(n)
0 C]1(Hz0, Hz

′
0)

c1◦−

��

[Π
(n)
0 C]1(Gb0, Gb

′
0)

−◦c′1 **UUUUUUU

[Π
(n)
0 C]1(Gb0, Hz

′
0)

σow gggggggg
gggggggg

[Π
(n)
0 ε]1

rz

is the same as (and determined by)

Π
(n−1)
0 (P1(p0, p

′
0))

L
p0,p
′
0

1))RRRRRRR

Π
(n−1)
0 S1

**

Π
(n−1)
0 R1 ''

Q1(p0, p
′
0)

Q1 //

P1

��

[Π
(n)
0 Z]1(z0, z

′
0)

Π
(n−1)
0 H1

��

Π
(n−1)
0 (B1(b0, b

′
0))

Π
(n−1)
0 G1 ))TTTTTTT

Π
(n−1)
0 (C1(Hz0, Hz

′
0))

c1◦−

��

Π
(n−1)
0 (C1(Gb0, Gb

′
0))

−◦c′1 **UUUUUUU

Π
(n−1)
0 (C1(Gb0, Hz

′
0))

σow gggggggg
gggggggg

Π
(n−1)
0 (ε1)
rz
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This shows that L
p0,p′0
1 is itself a comparison between Π0 of an h-pullback

and an h-pullback of a Π0 of a diagram (of (n-1)-groupoids), hence it is
h-surjective by induction hypothesis.

5.6. Lemma. If an n-functor L : A → K is h-surjective, then also
Π

(n)
0 (L) is h-surjective.

Proof. By induction on n.
1) For n = 1, let L be an h-surjective functor between groupoids, i.e.
L is full and essentially surjective on objects. Therefore, for an ele-
ment [k0]∼ ∈ Π

(1)
0 K there exists a pair (a0, k1 : La0 → k0). Hence

(Π
(1)
0 L)([a0]∼) = [La0]∼ = [k0]∼.

2) For n = 2, let L be an h-surjective morphism between 2-groupoids.
Explicitely, this means that

(i) for any k0 there exist (a0, k1 : La0 → k0), and

(ii) for any pair a0, a
′
0, L

a0,a′0
1 is h-surjective.

Since [Π
(2)
0 L]0 = L0, for any k0 one has [k1]∼ : La0 → k0, and this

proves the first condition on Π
(2)
0 L. Moreover, once we fix a pair a0, a

′
0

of objects, by definition one has [Π
(2)
0 L]

a0,a′0
1 = Π

(1)
0 (L

a0,a′0
1 ). Hence it is

h-surjective by the previous case.
3) Finally, let n > 2. A morphism L of n-groupoids is h-surjective

when conditions (i) and (ii) above hold. Since [Π
(n)
0 L]0 = L0 and

[Π
(n)
0 (K)]1 = Π

(n−1)
0 (K1), condition (i) for Π

(n)
0 L precisely is condition

(i) for L, hence it holds. Moreover, whence we fix a pair a0, a
′
0 of ob-

jects, by definition one has [Π
(n)
0 L]

a0,a′0
1 = Π

(n−1)
0 (L

a0,a′0
1 ). Hence it is

h-surjective by induction hypothesis.

We are ready to state and prove the main result of this section.

5.7. Proposition. Given an exact sequence in n-Gpd∗

A
F

//

0

!!
B

G
// C

ε
��
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the sequence

Π
(n)
0 A

Π
(n)
0 F

//

0

��

Π
(n)
0 B

Π
(n)
0 G

// Π
(n)
0 C

Π
(n)
0 ε��

is exact in (n-1)-Gpd∗.

Proof. Let us consider the diagram

K∗
(

Π
(n)
0 G

)
((PPPPPPPPPPPPP

0

%%

Π
(n)
0

(
K∗(G)

)L′

OO

// Π
(n)
0 B

Π
(n)
0 G

// Π
(n)
0 C

Π
(n)
0 A

Π
(n)
0 L

OO

Π
(n)
0 F

66mmmmmmmmmmmmmmmm

κ�� ����
����

where L is the comparison in n-Gpd (notations as in Definition 4.2).

L is h-surjective by hypothesis. Therefore Π
(n)
0 L is h-surjective by

Lemma 5.6. Moreover, L′ is the comparison in (n-1)-Gpd, so that it
is h-surjective by Lemma 5.5. Finally, their composition is again h-
surjective, and it is the comparison between Π

(n)
0 A and the kernel of

Π
(n)
0 G by uniqueness in the universal property of h-kernels.

6. Lax n-modifications

We already have two sesqui-functors Π
(n)
0 and D(n). In Section 7 we will

construct two other sesqui-functors Π
(n)
1 and Ω(n). In order to define Ω(n)

on lax n-transformations, we use the fact that h-pullbacks in n-Gpd? sat-
isfay another universal property. To express this new universal property
we introduce here lax n-modifications between lax n-transformations.
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6.1. Definition. Let α, β : F ⇒ G : C → D be 2-morphisms of n-
categories. By a 3-morphism Λ : α _ *4 β

C

F

��

G

BBDα

��

β

��

Λ _*4

is meant:

1. The equality α = β if n = 1.

2. A lax n-modification Λ : α _*4 β if n > 1, that is, a pair
〈Λ0,Λ1〉, where Λ0 : C0 → D2 is a map such that, for every c0

in C0, Λ0(c0) : α0(c0) → β0(c0), and Λ1 = {Λc0,c′0
1 }c0,c′0∈C0

is a col-
lection of 3-morphisms of (n-1)-categories that fill the following
diagrams:

C1(c0, c
′
0)

F
c0,c
′
0

1

}}{{{{{{{{{{{{{{{{{{{{{{{{{{{{

G
c0,c
′
0

1

!!CCCCCCCCCCCCCCCCCCCCCCCCCCCC

D1(Fc0, F c
′
0) −◦αc′0

��
−◦βc′0 --

D1(Gc0, Gc
′
0)αc0◦−

��
βc0◦−qqD1(Fc0, Gc

′
0)

−◦Λc′0
����

�	 ����
Λc0◦−

3333

��
3333

α
c0,c
′
0

1ks

β
c0,c
′
0

1

ks
Λ
c0,c
′
0

1

�JT
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i.e.

G
c0,c′0
1 · (− ◦ αc′0)

α
c0,c
′
0

1 +3

G
c0,c
′
0

1 ·(Λc0◦−) ��

F
c0,c′0
1 · (− ◦ αc′0)

F
c0,c
′
0

1 ·(−◦Λc0)��

G
c0,c′0
1 (̇βc0 ◦ −)

Λ
c0,c
′
0

1

j/;jjjjjjjjj
jjjjjjjjj

jjjjjjjjj

β
c0,c
′
0

1

+3 F
c0,c′0
1 · (− ◦ βc′0)

These data must obey to functoriality axioms described by equa-
tions in (n-1)-Cat, see [13].

In the pointed case we ask moreover that Λ0(?) is the identity 2-cell.

Once equipped with lax n-modifications, the sequi-categories n-Cat, n-
Gpd and n-Gpd? are sesqui2-categories, see [13]. This essentially means
that:

- there are 2-compositions of lax n-modifications as Λ · Σ:

��
@@

��
��

��

Λ _*4 Σ _*4

and reduced 1-compositions of lax n-modifications as ω · Λ and
Λ · α:

��$$:: DD
�� ��

Λ _ *4

α
��

ω
��

so that homs are sequi-categories;

- there is reduced horizontal 0-composition of lax n-modifications
as L · Λ and Λ ·M :

L // ��
CC

M //
�� ��

Λ _*4
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so that composing with an n-functor gives a sesqui-functor be-
tween homs;

- there is horizontal 0-composition of lax n-transformations

α ∗ β : α \ β _*4 α/β : F ·H +3 G ·K

F

��

G

AAα

��

H

��

K

AAβ

��

where domain and codomain 2-morphisms are respectively

α \ β := (F · β) · (α ·K) (α ·H) · (G · β) =: α/β

F

��

H

��

K

AAβ

��F

��

G

AAα

��
K

AA

F

��

G

AAα

��

H

��

G

AA

H

��

K

AAβ

��

(5)

so that 0-composing with a 2-morphism gives a lax natural trans-
formation of sesquifunctors.

The full definition of sesqui2-category, with the remaining compatibility
axioms, and the fact that n-Cat is a sesqui2-category can be found
in [12, 13], see also [2, 3] for the horizontal 0-composition of lax n-
transformations. Here we just recall the inductive definition of α ∗ β:

(a) for any c0 ∈ C0, [α ∗ β]0(c0) = β1(α0(c0))

(b) for any c0, c
′
0 ∈ C0, [α ∗ β]

c0,c′0
1 = α

c0,c′0
1 ∗ βFc0,Gc

′
0

1

6.2. Remark. For sake of clarity, let us write explicitly α∗β for n = 2.
Given c1 : c0 → c′0 in C and d1 : d0 → d′0 in D, the lax 2-transformations
α and β are specified by

Fc0
F1c1 //

αc0

��

Fc′0

αc′0
��

Gc0 G1c1
//

α1c1
9Azzzzzzzz

zzzzzzzz
Gc′0

Hd0
H1d1 //

βd0
��

Hd′0

αc′0
��

Kd0 K1d1
//

β1d1
8@yyyyyyyy

yyyyyyyy
Kd′0
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and the lax 2-modification α ∗ β is given by

H(Fc0)
β(Fc0)

{{wwwwwwww H1(αc0)

##GGGGGGGG

K(Fc0)

K1(αc0) ##GGGGGGGG
H(Gc0)

β(Gc0){{wwwwwwww

K(Gc0)

+3β1(αc0)

The following proposition holds in n-Cat as well as in n-Gpd and in
n-Gpd? (for h2-pullbacks see also [6]).

6.3. Proposition. The h-pullback described in Section 2

P
Q //

P
��

C
G
��

A
F
//

ε
;C�������

�������
B

satisfies the following universal property: for every pair of four-tuples
(X,M,N, ω) and (X,M,N, ω)

X N //

M
��

C
G
��

A
F
// B

ω
;C����

����

X N //

M
��

C
G
��

A
F
// B

ω
;C����

����

for every pair of lax n-transformations α and β

XM

��
Mnn

α

��
11111

11111
N

��
N 00

β�
 



A C

and for every lax n-modification Σ

M · F α·F +3

ω

��

M · F
ω
��

N ·G

Σ l0<llllllll
llllllll

llllllll

β·G
+3 N ·G
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there exists a unique lax n-transformation λ : L ⇒ L : X → P such
that

λ · P = α, λ ·Q = β, λ ∗ ε = Σ.

We will recall this property as the universal property of the h2-pullback.

Proof. The n-functors L and L are given by the universal property of
the h-pullback applied respectively to (X,M,N, ω) and (X,M,N, ω).
As far as λ is concerned, one has:

- for any x0 ∈ X0, λx0 = (αx0,Σx0, βx0) : Lx0 → Lx0

- for any x0, x
′
0 ∈ X0, λ

x0,x′0
1 is given by the universal property of the

h2-pullback P1(Lx0, Lx
′
0) in (n-1)-Cat:

λ
x0,x′0
1 : L

x0,x′0
1 · (λ0x0 ◦ −)⇒ L

x0,x′0
1 · (− ◦ λ0x

′
0)

is the unique lax (n-1)-transformation such that

λ
x0,x′0
1 ·QLx0,Lx′0

1 = β
x0,x′0
1 , λ

x0,x′0
1 ·PLx0,Lx′0

1 = α
x0,x′0
1 , λ

x0,x′0
1 ∗εLx0,Lx

′
0

1 = Σ
x0,x′0
1

7. The sesqui-functors Π
(n)
1 and Ω(n)

We start with a first, easy description of the sesqui-functor

Π
(n)
1 : n-Gpd? → (n-1)-Gpd?

7.1. Definition. (The sesqui-functor Π
(n)
1 )

- Let C be a pointed n-groupoid. We define Π
(n)
1 C = C1(?, ?). It is

a pointed (n-1)-groupoid with the identity 1-cell as base point.

- Let F : C→ D be an n-functor in n-Gpd?. Since F (?) = ?, we get

an (n-1)-functor Π
(n)
1 F = F ?,?

1 : C1(?, ?)→ D1(?, ?)

- Let α : F ⇒ G : C → D be a lax n-transformation in n-Gpd?.
Since α0(?) = u(?), we get a lax (n-1)-transformation Π

(n)
1 α =

α?,?1 : G?,?
1 → F ?,?

1 .
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It is easy to check that Π
(n)
1 : n-Gpd? → (n-1)-Gpd? is a sesqui-functor

contravariant on lax n-transformations.

Despite its simplicity, the previous definition is quite difficult to use in
our setting, because it is not an inductive definition. For this reason,
we look for a different decription of Π

(n)
1 .

7.2. Definition. (The sesqui-functor Ω(n))

- Let C be a pointed n-groupoid. We define Ω(n)C by the following
h-pullback

Ω(n)C
! //

!
��

I
?

��
I ?

//

εC

8@yyyyyyyyyy

yyyyyyyyyy C

- Let F : C→ D be an n-functor in n-Gpd?. The universal property
of the h-pullback Ω(n)D gives a unique n-functor Ω(n)F : Ω(n)C→
Ω(n)D such that Ω(n)F · εD = εC · F.

- Let α : F ⇒ G : C → D be a lax n-transformation in n-Gpd?.
Consider the following situation

Ω(n)C
! //

!
��

I
?

��
I ?

//

εC\α
8@yyyyyyyyyy

yyyyyyyyyy D

Ω(n)C
! //

!
��

I
?

��
I ?

//

εC/α

8@yyyyyyyyyy

yyyyyyyyyy D

Ω(n)C
""
<<=

����
=

I

I

! · ?
εC\α

��

! · ?
εC/α
��

! · ?

εC∗α
y5Dyyyyyyyy

yyyyyyyy

yyyyyyyy
! · ?

The universal property of the h2-pullback Ω(n)D gives a unique
lax n-transformation

Ω(n)α : Ω(n)G⇒ Ω(n)F : Ω(n)C→ Ω(n)D.

such that Ω(n)α ∗ εD = εC ∗ α.

It is easy to check that the previous data give a sesqui-functor

Ω(n) : n-Gpd? → n-Gpd?

contravariant on lax n-transformations.
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7.3. Proposition. There are two strict natural isomorphisms of sesqui-
functors

(n-1)-Gpd?
D(n)

&&NNNNNNNNNNN

'

n-Gpd?

Π
(n)
1

88ppppppppppp

Ω(n)
// n-Gpd?

n-Gpd?
Π

(n)
1 //

Ω(n) %%KKKKKKKKKK
(n-1)-Gpd?

n-Gpd?
Π

(n)
0

88ppppppppppp
'

Proof. The second isomorphism follows from the first one composing
with Π

(n)
0 . As far as the first one is concerned, we recover a natural iso-

morphism of pointed n-groupoids θC : D(n)(Π
(n)
1 C)→ Ω(n)C as a special

case of that given in Proposition A.1. It suffices to let θC = S?,?
C .

We are going to prove the main result of this section: the sesqui-functors
Ω(n) and Π

(n)
1 preserve exact sequences. We need two preliminary lem-

mas.

7.4. Lemma. The sesqui-functor Ω(n) : n-Gpd? → n-Gpd? preserves h-
pullbacks.

Proof. (Throughout the proof we will omit the superscripts (n).) Let
us consider an h-pullback

Q Q //

P
��

C
G
��

A
F

//

φ 3;ooooooo
ooooooo

B

in n-Gpd?. By the universal property of h2-pullbacks we get Ω(φ) as in
the diagram

Ω(Q)
Ω(P ) //

Ω(Q)

��

Ω(A)

Ω(F )

��
Ω(C)

Ω(G)
//

Ω(φ)

2:mmmmmmmm
mmmmmmmm

Ω(B)
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Further let us consider the diagram

X M //

N
��

Ω(A)

Ω(F )
��

Ω(C)
Ω(G)

//

ω
2:mmmmmmmm

mmmmmmmm

Ω(B)

that by Proposition 7.3 can be redrawn

X M //

N
��

D(A1(α, α))

D(Fα,α1 )

��
D(C1(?, ?))

D(G?,?1 )
//

ω
19jjjjjjjjjj

jjjjjjjjjj

D(B1(?, ?))

Applying Π0 one gets

Π0(X)
Π0(M) //

Π0(N)

��

A1(?, ?)

F ?,?1
��

C1(?, ?)
G?,?1

//

Π0(ω) 19lllllllll
lllllllll

B1(?, ?)

Since Q1(?, ?) is defined as an h-pullback, its universal property yields
a unique morphism L : Π0(X)→ Q1(?, ?) such that

L · P ?,?
1 = Π0(M), L ·Q?,?

1 = Π0(N), L · φ?,?1 = Π0(ω)

Using Proposition 5.4 and Proposition 7.3, we obtain from L the re-
quired factorization X→ D(Q1(?, ?)) ' Ω(Q).

7.5. Lemma. The sesqui-functor Ω(n) : n-Gpd? → n-Gpd? preserves h-
surjective morphisms.

Proof. This is straightforward. Let L : K→ A be an h-surjective mor-
phism. Then

Ω(n)(L) = D(n)(L?,?1 )

Now L?,?1 is h-surjective by definition since L is, and clearly D(n) pre-
serves h-surjective morphisms.
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7.6. Proposition. Given an exact sequence in n-Gpd?

A
F
//

0

��
B

G
// C

λ��

the sequence

Ω(n)A
Ω(n)F //

0

;;Ω(n)B
Ω(n)G // Ω(n)C

Ω(n)λ��

is exact in (n-1)-Gpd?.

Proof. Let L : A → K∗(G) be the h-surjective comparison with the h-
kernel of G. By Lemma 7.4 above, Ω(n)L is the comparison with the
h-kernel of Ω(n)G, and it is h-surjective by Lemma 7.5.

7.7. Corollary. The sesqui-functor Π
(n)
1 : n-Gpd? → (n-1)-Gpd? pre-

serves exact sequences, reversing the direction of the 2-morphism.

8. The fibration sequence of an n-functor

In this section we construct an exact sequence of the form

Ω(n)B
Ω(n)F // Ω(n)C

∇ // K∗(F )
K∗(F ) // B F // C

starting from a pointed n-functor F. We need some lemmas.

8.1. Lemma.

1. Let F : A→ B and G : B→ C be morphisms of n-groupoids. If G
is an equivalence and F ·G is h-surjective, then F is h-surjective.

2. Let α : F ⇒ G : B → C be a 2-morphism of n-groupoids. F is
h-surjective if, and only if, G is h-surjective.
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Proof. The proof of the first part, by induction, is strightforward. As
far as the second part is concerned, observe that applying the inductive
step we have that

C1(c0, c
′
0)

G
c0,c
′
0

1 // D1(Gc0, Gc
′
0)

α0c0◦− // D1(Fc0, Gc
′
0)

is h-surjective. Since α0c0 ◦ − is an equivalence, we conclude using the
first part of the lemma.

8.2. Lemma. Let α : F ⇒ H : A → B be a 2-morphism of pointed n-
groupoids. Consider also the following diagrams

A
F
//

0

��
B

G
// C

ε
��

A
H
//

0

��
B

G
// C

ε·(αG)
��

If (F, ε,G) is exact, then (H, ε · (αG), G) is exact.

Proof. Let F ′, H ′ : A→ K∗(G) be the canonical factorizations of F and
H through the h-kernel. Using the universal property of the h2-kernel
K∗(G) we get a 2-morphism α′ : F ′ ⇒ H ′ and we conclude using the
second part of Lemma 8.1.

8.3. Lemma. Consider

A G // C BFoo DHoo

and the following h-pullbacks in n-Gpd:

Q G //

H
��

D
H
��

P G //

F
��

ψ
;C�������

�������
B
F
��

A
G
//

ϕ
;C~~~~~~~

~~~~~~~
C

X G̃ //

H̃·F

��

D

H·F

��
A

G
//

ε

BJ



C

Consider also the canonical morphisms

∇ : X→ P such that ∇ · F = H̃ · F , ∇ ·G = G̃ ·H, ∇ · ϕ = ε

L : X→ Q such that L ·H = ∇, L ·G = G̃, L · ψ = id

Then L : X→ Q is an equivalence.
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Proof. By induction on n.
1) For n = 1, the result immediately follows from the fact that in this
case h-pullbacks are bilimits, so that they are defined up to equivalence.
2) For n > 1, let us check that L is essentially surjective. An object in
Q has the form

q0 = ((a0, c1 : Ga0 → Fb0, b0), b1 : b0 → Hd0, d0)

whereas an object in X has the form

x0 = (a0, γ1 : Ga0 → F (Hd0), d0)

with L(x0) = ((a0, γ1, Hd0),=, d0). Therefore, for a given object q0 ∈ Q,
we put x0 = (a0, c1 ·F (b1), d0) and we have a 1-cell q0 → L(x0) with the
identity as components in A and D, and b1 as component in B.
Finally, to prove that L

x0,x′0
1 : X1(x0, x

′
0) → Q1(Lx0, Lx

′
0) is an equiva-

lence of (n-1)-groupoids we can apply the inductive hypothesis. Indeed,

since L · ψ = id and ∇ · ϕ = ε, L
x0,x′0
1 is constructed using h-pullbacks

precisely as L starting from

X1(x0, x
′
0)

G̃1

!!

H̃F 1

''

ε1 +3

Q1(Lx0, Lx
′
0)

G1
��

H1 // P1(∇x0,∇x′0)
F 1 //

G1

��

A1(H̃Fx0, H̃Fx
′
0)

G1·(−◦ε0x′0)

��

D1(G̃x0, G̃x
′
0)

ψ1

2:lllllllllllll

lllllllllllll

H1

// B1(HG̃x0, HG̃x
′
0)

ϕ1

08hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

F1·(ε0x0◦−)
// C1(GH̃Fx0, FHG̃x

′
0)

8.4. Lemma. Consider the following diagram in n-Gpd? :

ϕ

��W
T
//

0

""
X

L
// Y

F
// Z

If (T · L, ϕ, F ) is exact and L is an equivalence, then (T, ϕ, L · F ) is
exact.
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Proof. Let S : K∗(L · F ) → K∗(F ) be the factorization of (K∗(L · F ) ·
L, κ∗(L · F )) through the h-kernel of F. Clearly S is the composite of
two equivalences (the first one coming from Lemma 8.3 applied to

I ? // Z YFoo XLoo

and the second one obtained by pulling back L along K∗(F )), thus it is
itself an equivalence. Consider now the factorization T ′ : W→ K∗(L·F )
of (T, ϕ) through the h-kernel of L · F, and the factorization G : W →
K∗(F ) of (T · L, ϕ) thorugh the h-kernel of F. By uniqueness in the
universal property of the h-kernel, T ′ ·S = G. Since S is an equivalence
and, by assumption, G is h-surjective, we conclude by Lemma 8.1 that
T ′ is h-surjective.

8.5. Proposition. Let F : B → C be an n-functor in n-Gpd?. There
is a sequence

⇓σ ⇓κ∗(F )

Ω(n)B
Ω(n)F

//

0

$$

Ω(n)C ∇
//

0

;;K∗(F )
K∗(F )

//

0

!!
B

F
// C

=

which is exact in Ω(n)C, K∗(F ), and B.

Proof. 1) Exactness in B : obvious.

2) Exactness in K∗(F ) : applying Lemma 8.3 to I ? // C BFoo I?oo

we get an equivalence

L : Ω(n)C→ K∗(K∗F ) such that L ·K∗(K∗F ) = ∇, L · κ∗(K∗F ) = id,

and the exactness of (∇, id,K∗(F )).
3) Exactness in Ω(n)C : applying Lemma 8.3 to

I ? // K∗(F )
K∗(F )// B I?oo
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we get an exact sequence

id
��

Ω(n)B Θ
//

0

%%
K∗(K∗F )

K∗(K∗F )
// K∗(F )

where Θ is the unique morphism such that Θ · K∗(K∗F ) = 0 and Θ ·
κ∗(K

∗F ) = εB. By the universal property of the h2-kernel K∗(F ) we
get a 2-morphism σ : 0 ⇒ Ω(n)F · ∇ such that σ · K∗(F ) = εB and
σ ∗ κ∗(F ) = id. By the universal property of the h2-kernel K∗(K∗F ) we
get a 2-morphism λ : Θ ⇒ Ω(n)F · L such that λ · K∗(K∗F ) = σ and
λ ∗κ∗(K∗F ) = id. Therefore, following Lemma 8.2, we get the sequence

λ·K∗(K∗F )
��

Ω(n)B

0

&&

Ω(n)F

// Ω(n)C L
// K∗(K∗F )

K∗(K∗F )
// K∗(F )

exact in K∗(K∗F ). Finally, since L·K∗(K∗F ) = ∇ and λ·K∗(K∗F ) = σ,
following Lemma 8.4 we get the exact sequence

σ
��

Ω(n)B
Ω(n)F

//

0

��

Ω(n)C ∇
// K∗(F )

Since the sesqui-functor Ω(n) preserves exact sequences, if we apply it
to the sequence of Proposition 8.5 we get another exact sequence

Ω(n)Ω(n)B // Ω(n)Ω(n)C // Ω(n)K∗(F ) // Ω(n)B // Ω(n)C

This sequence and the sequence of Proposition 8.5 can be pasted to-
gether. Therefore, iterating the process, we obtain a long exact sequence
(which trivializes after n applications).
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9. The Ziqqurath of a pointed n-functor

A different perspective is gained by considering the sesqui-functor Π1 in
place of Ω. In fact in the longer exact sequences obtained at the end of
the previous section, repeated applications of Ω give structures which are
discrete in higher dimensional cells. Their exactness can be investigated
in lower dimensional settings, i.e. after repeated applications of Π0.
This is a consequence of the following easy to prove

9.1. Lemma. The sesqui-functor Π0 commutes with the sesqui-functor
Π1, i.e. for every integer n > 1 the following diagram is commutative

n-Gpd?
Π

(n)
0 //

Π
(n)
1
��

(n-1)-Gpd?

Π
(n−1)
1
��

(n-1)-Gpd?
Π

(n−1)
0

// (n-2)-Gpd?

9.2. Remark. In the language of loops, we can restate the above
lemma in other terms:

Π0(Π0(Ω(−))) = Π0(Ω(Π0(−)))

Let now a morphism F : C→ D of pointed n-groupoids be given. Then
the h-kernel exact sequence

K
K

//

0

��
B

F
// C

κ
��

gives two exact sequences of pointed (n-1)-groupoids:

Π1K
Π1K //

0

==Π1B
Π1F // Π1C

Π1κ��

Π0K Π0K
//

0

!!
Π0B Π0F

// Π0C
Π0κ��
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These can be connected together in order to give a six term exact se-
quence of pointed (n-1)-groupoids

Π1K
Π1K //

0

==Π1B
Π1F //

0

!!
Π1C ∆

//

0

==
Π1κ��

δ��
Π0K Π0K

//

0

!!
Π0B Π0F

// Π0C
Π0κ��

where ∆ = Π0(∇) and δ = Π0(σ) (see 8.5 for ∇ and σ).

Applying Π0 and Π1, we get two six-term exact sequences. Using the
previous lemma, these can be pasted in a nine-term exact sequence of
(n-2)-groupoids (cells to be pasted are dotted in the diagram):

· //
��

· //
Π 2

1 κ
��

CC·
��

// · //
CC· //

Π1Π0κ

��

·
Π1δ

��

· //
CC· //

Π0Π1κ

��

��
· CC

// · //
��

· //
Π 2

0 κ
��

·
Π0δ
��

Iterating the process we obtain a sort of tower, a Ziqqurath, in which
the lower is the level, the lower is the dimension and the longer is the
length of the sequence.
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· //
��· //�� · n-Gpd

· //
@@· //

��

��· //��
@@· //

��

��· //�� · (n-1)-Gpd

· //
@@· //

��

��· //��
@@· //

��

��· //��
@@· //

��

��· //�� · (n-2)-Gpd

...
...

· //
@@· //

��

��· //�� · · · · · //
@@· //

��

��· //�� · Gpd

· //
@@· //

��

��· //�� · · · · · //
@@· //

��

��· //�� · Set

In particular, the last row counts 3(n+1) terms. From left to right,
there are 3(n-1) abelian groups, 3 groups and 3 pointed sets.

A. Paths sesqui-functor in n-Cat

This section is quite technical. Its aim is to give some explicit construc-
tions that specialize in order to have a good description of the sesqui-
functor Π

(n)
1 . An observation which can help throughout this section is

the analogy between the hom-(n-1)-groupoid of an n-groupoid C and
the paths of a topological space. Given an n-groupoid (n-category) C
and two objects c0, c

′
0, we define Pc0,c′0(C) by means of the following

h-pullback:

Pc0,c′0(C) ! //

! ��

I
(n)

[c′0]
��

I
(n) [c0]

// Cε
c0,c
′
0

C

5=sssss
sssss (6)

Pc0,c′0 easily extends to morphisms. In fact for F : C→ D one defines

Pc0,c′0(F ) : Pc0,c′0(C)→ Pc0,c′0(D)

by means of the universal property of h-pullbacks yielding Pc0,c′0(D), for

the four-tuple 〈Pc0,c′0(C), !, !, ε
c0,c′0
C · F 〉. It is easy to see that this makes
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Pc0,c′0(−) functorial. Unfortunately this does not extend straightforward
to 2-morphisms. In fact for a pair of parallel morphisms F,G : C→ D,
Pc0,c′0(F ) and Pc0,c′0(G) are no longer parallel.
Indeed in applying the same argument as for defining Pc0,c′0(−) on mor-
phisms, the corresponding diagram suggests to consider the 0-composition
of 2-morphisms

ε
c0,c′0
C ∗ α : ε

c0,c′0
C \ α _ *4 ε

c0,c′0
C /α .

Hence we can consider the four-tuples

〈Pc0,c′0(C), !, !, ε
c0,c′0
C \ α〉 and 〈Pc0,c′0(C), !, !, ε

c0,c′0
C /α〉

together with id! : !⇒ ! (taken two times) and the 3-morphism ε
c0,c′0
C ∗α.

Applying the universal property of h2-pullbacks we get a 2-morphism

Pc0,c′0(α) : P[αc0 ]◦Pc0,c′0(G))⇒ Pc0,c′0(F )◦P[αc′0
] : Pc0,c′0(C)→ PFc0,Gc′0(D)

such that Pc0,c′0(α) ∗ εFc0,Gc
′
0

D = ε
c0,c′0
C ∗ α.

We have denoted by P[αc0 ]◦Pc0,c′0(G) and Pc0,c′0(F )◦P[αc′0
] the morphisms

obtained by applying the 1-dimensional universal property to ε
c0,c′0
C \ α

and ε
c0,c′0
C /α respectively. Therefore the symbol ◦ involved should be

considered just as a typographical suggestion. (Indeed it can be shown
that it is a 0-composition of morphisms, but this would lead us far from
the point.)

A.1. Proposition. For every n-category C, and every two objects
c0, c

′
0 in C, there exists a canonical isomorphism

S
c0,c′0
C : D(C1(c0, c

′
0))→ Pc0,c′0(C)

In the case of pointed n-groupoids, this gives a natural isomorphism with
components

S∗,∗C : D(Π1(C))→ Ω(C)

where Ω(C) = P∗,∗(C)

We start by making explicit the h-pullback, but first we need to be more
precise on units.
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A.2. Remark. Let C be an n-category. For a fixed object c0 of C, let
us consider the unit (n-1)-functor Cu0(c0) : I

(n−1)
→ C1(c0, c0), that is a

pair

[Cu0(c0)]0 : ∗ 7→ id(c0) ∈ [C1(c0, c
′
0)]0

[Cu0(c0)]1 : I
(n−2)
7→ [C1(c0, c

′
0)]1(id(c0), id(c0))

Now, by functoriality we get the interchange

[Cu0(c0)]1 = Cu1(id(c0)) = C1(c0,c0)u0(id(c0))

and this allows the following explicit definition:

Cu0(c0) = 〈u(1)(c0), u(2)(c0), · · · , u(n)(c0)〉

where u(k)(c0) is the identity k-cell over c0.

In the rest of this section the n-category Pc0,c′0(C) will be denoted by Q.

A.3. Proposition. Given the h-pullback of n-categories

Q ! //

! ��

I
(n)

[c′0]
��

I
(n) [c0]

// C
ε

9A{{{{
{{{{

(7)

and ck, c
′
k : ck−1 → c′k−1, the hom-(n-k)-category

Qk

((
u(k−1)(∗), ck, u(k−1)(∗)

)
,
(
u(k−1)(∗), c′k, u(k−1)(∗)

))
is well-defined and it is given by h-pullback over the pair 〈[ck], [c′k]〉.
The proof by induction can be found in [13], and it yields immediately:

A.4. Corollary. The 2-morphism ε is given explicitly by

ε = 〈ε0, [ε
−,−
1 ]0, . . . , [ε

−,−
n−1]0,=〉

where

[ε
(∗,ck−1,∗),(∗,c′k−1,∗)
k ]0 : Qk((∗, ck−1, ∗), (∗, c′k−1, ∗)) → Ck(ck−1, c

′
k−1)

(∗, ck−1
ck // c′k−1 , ∗) 7→ ck.
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A.5. Corollary. With notation as above,

D(Π0(Q)) = Q.

In order to describe all compositions of the n-category Q, it suffices to
study the 0-composition in Q = Pc0,c′0(C), because k-compositions (for
k > 0) are implicit in the inductive definition. Ditto for units. This
is reported in the lemma below, which together with the following one
establishes a link between the globular and the inductive point of view.
The interested reader can find the proofs in [13].

A.6. Lemma. Let c1, c
′
1, c
′′
1 : c0 → c′0 be fixed in C. Given

ck : c1 +3__ __ c′1 , c′k : c1
+3__ __ c′1

with 1 < k ≤ n, the following equations hold:

(∗, ck, ∗) Q ◦0 (∗, ck, ∗) = (∗, ck C ◦1 c′k, ∗);[Qu0((∗, c1, ∗))
]
k

=
(
∗,
[Cu1(c1)

]
, ∗
)
.

A.7. Lemma. Let c0, c
′
0 be objects of an n-category C. The assignment

S
c0,c′0
C = S : D(C1(c0, c

′
0))→ Pc0,c′0(C) = Q

given explicitly by S = 〈S0,S1, . . . ,Sn〉 with Si−1(ci) = (∗, ci, ∗) for
i = 1, 2, . . . , n, and Sn = Sn−1, is an isomorphism of discrete n-
categories.

Now that we have developed the machinery, we are able to prove the
main result of the section.

Proof of Proposition A.1. From the previous lemmas we have the

existence of the canonical isomorphism of n-categories S
c0,c′0
C for any

pair of objects c0, c
′
0. Further, for an n-functor F : C → D we get a

(c0, c
′
0)-indexed family of commutative squares:

D(C1(c0, c
′
0))

D(F
c0,c
′
0

1 )
//

S
c0,c
′
0

C ��

D(D1(Fc0, F c
′
0))

S
Fc0,Fc

′
0

D��
Pc0,c′0(C)

Pc0,c′0
(F )

// PFc0,F c′0(D)

(8)
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We prove this by induction.
For n = 1 it is just a diagram of discrete categories. It suffices to
verify commutativity on objects. To this end, let us choose a c1 : c0 →
c′0. Then SD(DF (c1)) = SD(Fc1) = (∗, F c1, ∗) and PF (SC(c1)) =
PF (∗, c1, ∗) = (∗, F c1, ∗).
For n > 1, first we have to show that diagram (8) commutes on objects,
but this amounts exactly to what we have just shown for n = 1. Thus
for c1, c

′
1 : c0 → c′0 we consider homs:

[D(C1(c0, c
′
0))]1(c1, c

′
1)

[D(F
c0,c
′
0

1 )]
c1,c
′
1

1

,,XXXXXXXXXXXXXXXXXXXXXXXX

[S
c0,c
′
0

C ]
c1,c
′
1

1

��

[D(D1(Fc0, F c
′
0))]1(Fc1, F c

′
1)

[S
Fc0,Fc

′
0

D ]
Fc1,Fc

′
1

1

��

[Pc0,c′0(C)]1((∗, c1, ∗), (∗, c′1, ∗))

[Pc0,c′0
(F )]�,�1 ,,XXXXXXXXXXXXXXXXXXXXXXX

[PFc0,F c′0(D)]1((∗, F c1, ∗), (∗, F c′1, ∗))

The definition of D and the previous discussion give

D
(
[C1(c0, c

′
0)]1(c1, c

′
1)
) D

(
[F
c0,c
′
0

1 ]
c1,c
′
1

1

)
//

T
c1,c
′
1

C ��

D
(
[D1(c0, c

′
0)]1(Fc1, F c

′
1)
)

T
Fc1,Fc

′
1

D��
Pc1,c′1

(
C1(c0, c

′
0)
)

Pc1,c′1
(F

c0,c
′
0

1 )

// PFc1,F c′1
(
D1(Fc0, F c

′
0)
)

Now, as the T ’s are just the S’s given for n-1, i.e.

T
c1,c′1
C = S

c1,c′1
C1(c0,c′0), T

Fc1,F c′1
D = S

Fc1,F c′1
D1(Fc0,F c′0),

the last diagram commutes by induction hypothesis.
All this obviously restricts to n-groupoids. Moreover, in the pointed
case we obtain a 2-contravariant natural isomorphism of sesqui-functors
S : Π1D ⇒ Ω : n-Gpd∗ → n-Gpd∗, i.e. a strict natural transformation
of sesqui-functors that reverses the direction of 2-morphisms and in

KASANGIAN, METERE & VITALE - ZIQQURATH OF EXACT SEQUENCES OF n-GROUPOIDS

- 41 -



which the assignments on objects are isomorphisms. In fact in n-Gpd∗
for a 2-morphism α : F ⇒ G : C → D, we can express the (strict)
naturality condition

D(C1(∗, ∗))

D(G∗,∗1 )

((

D(F ∗,∗1 )

66

S∗,∗C

��

D(D1(∗, ∗))

S∗,∗D

��
P∗,∗(C)

P∗,∗(G)

((

P∗,∗(F )

66
P∗,∗(D)

D(α∗,∗1 )
��

P∗,∗(α)
��

D(α∗,∗1 ) ·S∗,∗D

=

S∗,∗C · P∗,∗(α)

The proof that this last condition indeed holds is a consequence of a
more general (non-pointed) lemma which can be found in [13].
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